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Nonlinear rational systems/models, also known as total nonlinear dynamic systems/models, in an expression of a ratio of two
polynomials, have roots in describing general engineering plants and chemical reaction processes. The major challenge issue in
the control of such a system is the control input embedded in its denominator polynomials. With extensive searching, it could
not find any systematic approach in designing this class of control systems directly from its model structure. This study expands
the U-model-based approach to establish a platform for the first layer of feedback control and the second layer of adaptive
control of the nonlinear rational systems, which, in principle, separates control system design (without involving a plant model)
and controller output determination (with solving inversion of the plant U-model). This procedure makes it possible to achieve
closed-loop control of nonlinear systems with linear performance (transient response and steady-state accuracy). For the
conditions using the approach, this study presents the associated stability and convergence analyses. Simulation studies are
performed to show off the characteristics of the developed procedure in numerical tests and to give the general guidelines
for applications.

1. Introduction

This section justifies the reasons for designing controllers
for rational models by introducing model expression and
representations, achieved results in model identification,
and a critical review of controller-designing approaches.

1.1. Nonlinear Dynamic Rational Systems

Definition 1 [1]. Assign a triplet X, f , h , where X is an irre-
ducible real affine variety and f , h are mapping functions. A
system Σ, with input U ∈ℝm and output Y ∈ℝr , is defined as
polynomial/rational, while the functions f = f α ∣ α ∈U and
h X→ℝr both on X are mappings from input space to state
space and from state space to output space polynomial/ratio-
nal, respectively. That is, for polynomial systems, hi ∈ A
for all i = 1,… , r where A is the algebra of all polyno-
mials on the variety X, and for rational systems, hi ∈Q

for all i = 1,… , r where Q is the algebra of all rational
functions on the variety X.

For a single-input and single-output (SISO) nonlinear
dynamic rational system, it can be generally modelled with
a ratio of two polynomials [1, 2].

y k =
Np k

Dp k
+ e k

=
Np Yk−1,Uk−1, Ek−1
Dp Yk−1,Uk−1, Ek−1

+ e k

=
〠num

j=1 pnj k θnj

〠den
j=1pdj k θdj

+ e k ,

1

where y k ∈ℝ, u k ∈ℝ, and e k ∈ℝ denote measured out-
put, input, and model error/noise/uncertainties, respectively,
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at time instant k = 1, 2,… . Np k and Dp k are real val-
ued and smooth numerator and denominator polynomials,
respectively. Yk−1 ∈ℝn ⊃ y k − 1 ,… , y k − n , Uk−1 ∈ℝn ⊃
u k − 1 ,… , u k − n , and Ek−1 ∈ℝn ⊃ e k − 1 ,… , e k − n
denote the delayed outputs, inputs, and model noises,
respectively. pnj k ∈ℝ and pdj k ∈ℝ for regression terms
θnj ∈ℝ and θdj ∈ℝ, respectively, are the coefficients and num
and den for numbers of total regression terms of the polyno-
mials. The major properties of the rational model (1) are
summarised below:

It is also defined as a total nonlinear model [2] as it covers
many different linear and nonlinear models as its subsets
(such as NARMAX (nonlinear autoregressive moving aver-
age with exogenous input) models [3] and intelligent models
for neurofuzzy systems [4]). Rational systems have been
observed in general engineering, chemical processes, physics,
biological reactions, and econometrics; for example, rational
models are a class of mechanistic models in describing
catalytic reactions in chemical kinetics [5, 6]; metabolic,
signal, and genetic networks in systems biology [1]; and
movement of satellites in Earth orbit [1]. There have also
been reports of rational modelling applications [7–9].

This is more concise in structure than a polynomial; the
example below uses a Taylor series expansion to approximate
a simple rational model below.

y k = sin u k − 1
1 + y2 k − 3

= sin u k − 1 1 − y2 k − 3 + y4 k − 3
2

The other characteristic of the rational models is the
power to quickly change the model output while input has
small variations. Consider a simple system output below

y k = 1
1 + u k − 2 3

Clearly the model output will be dramatically increased,
as the input u k − 2 approaches −1. This comes from the
function of the denominator.

Introducing a denominator polynomial makes the model
concise in describing complexity and adds more functions in
describing nonlinearities. On the other side, in contrast to
polynomial systems, this makes identification and control
system design noticeably different and more difficult with
the inherent nonlinear parameters and control inputs [2].
Therefore, comprehensive studies of this class of systems in
theoretical and application aspects are required. This study
takes the pioneer step towards the control of rational systems.

1.2. Model Identification. Model identification has been
relatively mutual to some extent. So far, the identification
aspect has gone through data-driven model structure
detection, parameter estimation, and model validation from
noise-contaminated input and output data. The major work
on rational model identification is summarised in the follow-
ing categories: linear least squares (LLS) algorithms for
parameter estimation—extended LLS estimator [10], recur-
sive LLS estimator [11], orthogonal LLS structure detector

and estimator [12], fast orthogonal algorithm [13], and
implicit least squares algorithm [14], and nonlinear least
squares algorithms—prediction error estimator [15] and
globally consistent nonlinear least squares estimator [16].
Other algorithms include the following categories: back
propagation (BP) algorithm [17] and enhanced linear
Kalman filter (EnLKF) [18].

There are two model validation methods: higher order
correlation tests [19] and omnidirectional cross-correlation
tests [20].

A summary of the representative publications till 2015
can be found in a survey of rational model identification [2].

1.3. Controller Design. As surveyed above, rational models
have been increasingly used to represent nonlinear dynamic
plants. Consequently, the control system design should have
been considered on the agenda in the follow-up studies.
However, up to now, there is no reference found for design-
ing such controllers directly referred to the model analytical
knowledge. The paramount difficulty is that part of the con-
troller output is embedded in the denominator polynomial
Dp k . For example, y k = 0 5y k − 1 − y k − 2 u k − 1 +
0 1u5 k − 1 / 1 + y2 k − 2 + 0 2u2 k − 1 . With extensive
investigations through major academic publication search-
ing engines, it can be concluded that this study is the first
trial with analytical approaches to design a controller for
rational systems.

Regarding controller design approaches possibly referred
to the rational systems, these could be the reduction of ratio-
nal model structure complexity, which are neural network
models, linear approximation models, linearization, and
iterative learning control and U-model enhanced control. A
brief critical review of the approaches is presented.

Reference [21] on neural controllers is probably the first
publication relating to control of rational models. However,
the design approach has merely used rational models as
extreme nonlinear examples; it has not designed controllers
by taking the model structure into consideration (even if
known in advance), except for taking the models as the
representatives of complex nonlinear dynamic systems.

Piecewise linearization [22, 23] around operating points
has been widely studied to simplify controller-designed pro-
cedures when plants are subject to mild nonlinear dynamics.
It should be mentioned that a group of piecewise linear
models can be admitted as a linear model, with varying order
and parameters in different operating intervals. The prom-
ising property is using linear control design strategies
directly. However, it could induce inaccuracy and dynamic
uncertainty because of ignoring some inherent nonlinear-
ities from their original nonlinear representations. Further,
this method may also increase computational burden/
complexity while overborrowing piecewise linear intervals
to match severe nonlinearities.

Pointwise linearization has been claimed by neural
network-based control and/or adaptive control, which uses
linear models to approximate predominant dynamics around
an operating point or every input-output dynamic gain at
each time instance and then employs a neural network to
determine the error induced by the linearization [24, 25].
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Once again, it uses linear control system design to construct
nonlinear control systems. However, this involves online
neural network learning or online model iden parameter
estimation, and therefore, the constructed nonlinear control
system is operated under adaptive principles (the controller
parameters are updated with the neural network output),
even for deterministic nonlinear plants. The other related
issue is the selection of neural network topology, which has
no systematic procedure available to find the best fitted
neural network representative.

Feedback linearization is a well-developed subject [26]. A
general SISO nonlinear system is described as

x = f x = g x u

y = h x
4

where x is the state vector and u and y are the input and
output, respectively. f ⋅ , g ⋅ , and h ⋅ are real valued
and smooth mapping functions. With this model structure,
a series of analogies with some fundamental features of linear
control systems have been established, which provides a very
useful concept in the design of nonlinear control systems
using linear design methodologies. Obviously, the model
has u in an explicit position. The studied nonlinear rational
model has no such explicit expression for input u to be
designed, and this immediately reveals that the methodolo-
gies rooted in the approach, although useful references, are
not directly applicable in designing control of nonlinear
rational systems. The other input-output linearization tech-
niques [27] have had similar requirements for an explicit u
expression and special skills for state variable transformation.

Iterative learning/data-driven control/model-free control
is another possible control system design methodology in
avoiding model structure complexity. The approaches do
not require a clear plant model structure but still need plants
with some mild conditions in control [28, 29]. Again, if a
rational model is available, it is wasteful without using
the model information in the control system design. It is
believed, particularly for man-made engineering systems/
products (built up by rules/models), that any repetitive
process and motion has a model existing in operation even
though the model is yet to be identified.

U-Model-based control has claimed to radically relieve
the dependence of plant model-oriented design foundation.
The use of the plant model is effectively reduced as a refer-
ence for converting to U-model and accordingly to work
out the control output [30]. U-Model-based control assumes
the feasibility of using linear system design procedures to
design the control of nonlinear dynamic plants with assigned
response performances. The U-model control platform is
illustrated in Figure 1.

The U-model systematically converts smooth (polyno-
mial and extended including transcendental functions)
models, derived from principles or identified from measure-
ments, into a type of U-based model to equivalently describe
plant input-output relationship, so that it establishes a
general platform to facilitate control system design and
dynamic inversion. It should be mentioned that there is
nothing lost with the derived U-models from the original

nonlinear models. The difference between the two types of
model expressions is that those original nonlinear models
could be obtained from principles, such as Newton’s law, or
identified directly from measured data; the U-models are
derived from the original models in control design-oriented
expressions. Regarding the U-control (U-model-based con-
trol) research status, Zhu and Guo [31] have brought forward
a fundamental framework in terms of pole placement control
for nonlinear systems. More recently, U-control has been
expanded to general predictive control [32] and sliding
mode control [30]. To accommodate the U-control of state
space models, a backstepping algorithm is being expanded
to extract the controller output within multiloop U-
models. With the nature of separating control system design
(specifying closed-loop performance) and controller output
calculation (by resolving plant dynamic inversion through
U-model), it can be forecast that the other classical control
issues could be similarly formulated within a general and
concise framework.

1.4. Organisation of the Study. The remaining study is
organised into five major sections. Section 2 is used to
define a generic framework of control-oriented U-model
for representing smooth nonlinear dynamic plants. It is then
expanded by including a rational model and transcendental
functions as its subsets to lay a basis for applying linear con-
trol system design techniques. Section 3 proposes a general
pole placement controller for nonlinear rational systems
within the U-model framework. Section 4 shows design of
an adaptive UPPC for the control of stochastic nonlinear
rational systems. Section 5 tests a number of typical rational
systems with the developed procedures and shows the
exemplary procedures for potential users.

2. U-Model: A Generic Framework of
Control-Oriented Nonlinear Plant Models

2.1. U-Model Foundation: Polynomial [30]. Consider a
general polynomial description of

y k =Np Yk−1Uk−1 = 〠
L

i=0
pi k θi, 5

where y k ∈ℝ and u k ∈ℝ denote the plant output and
input, respectively, at time instant k = 1, 2,… . Np ⋅ ∈ℝ
is a real valued and smooth polynomial function and
Yk−1 ∈ℝn ⊃ y k − 1 ,… , y k − n and Uk−1 ∈ℝn ⊃ u k − 1
,… , u k − n denote the delayed outputs and inputs, respec-
tively. pi k ∈ℝ denotes the model structure variables, e.g.,
u k − 2 y3 k − 1 , u k − 1 u2 k − 3 , y k − 2 y k − 3 , and
θi ∈ℝ denote the coefficients. To convert the above

U-Model
Linear
control
system

Polynomial
and state space
plant models

Figure 1: U-Model-based control system design.
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polynomial into a U-model, which is a polynomial with an
argument of control input u k − 1 (also called controller
output while talking about control system design), it
gives [30]

y k = 〠
M

j=0
λj k uj k − 1 , 6

where degree M is of controller output u k − 1 and
λ k = λ0 k … λM k ∈ℝM+1 is the time-varying parame-
ter vector, a function of absorbing past inputs Uk−2, outputs
Yt−1, and parameters θnj in the original polynomial. An
example illustrating the conversion to U-model from an
ordinary polynomial is shown here. Consider a polynomial,

y k = 0 2y k − 1 y k − 3 + 0 5u k − 1 u k − 3
− 0 9y k − 2 u2 k − 1

7

Rearrange polynomial (7) with

y k = λ0 k + λ1 k u k − 1 + λ2 t u2 k − 1 , 8

where λ0 k = 0 2y k − 1 y k − 3 , λ1 k = 0 5u k − 3 , and
λ2 k = −0 9y k − 2 .

Clearly, the time-varying λj k is absorbing the past
inputs/outputs and parameters of the original polynomial,
associated with uj k − 1 .

Property 1. Assign φ ℝL+1 →ℝM+1 a U-mapping to convert
the classical polynomial expression of (5) to its U-expression
of (6) and the inverse be φ−1, that is

f pi, θi →φ f uj, λj 9

Thus, it has good mapping properties [30].

2.2. U-Mode: Rational. With reference to (1), its determinis-
tic parametric rational expression is given below:

y k =
Np

∗

Dp
∗ =

〠num
j=1 pnj k θnj

〠den
j=1pdj k θdj

10

Its U-model realisation can be determined by removing
the denominator to the left-hand side of (10); it gives

y k Dp
∗ =Np

∗ 11

Convert (11) into U-model form to yield

y k 〠
L

i=0
γi k ui k − 1 = 〠

M

j=0
λj k uj k − 1 , 12

where λj k ∈ℝ is a function of past inputs Uk−2 and outputs
Yk−1 and parameters θnj in the numerator polynomial.
Similarly, γi k ∈ℝ is a function of past inputs Uk−2 and
outputs Yk−1 and parameters θdj in the denominator

polynomial. M and L are the degrees of the model input
u k − 1 in the numerator and denominator, respectively.
Here is a simple example to show the conversion of

y k = y k − 1 1
u k − 1 13

Inspection of (12) gives

y k γ1 k u t − 1 = λ0 k , 14

where γ1 k = 1 and λ0 k = y k − 1 .
In the following sections of the controller design, it is

required to make a dynamic inversion of (12) to solve
for roots.

There are many standard root-solving algorithms for
such polynomial equations [30].

Remark 1. Compared with polynomial U-realisation, it can
be noted that rational model U-realisation is an implicit
expression of y k due to the multiplicative item y k Dp k .

2.3. U-Model: Extended. To describe more general nonlinear
terms including those transcendental functions, define the
extended U-model below:

y k f b u k − 1 = f a u k − 1 , 15

where f b u k − 1 ∈ℝ and f a u k − 1 ∈ℝ are smooth
functions. In general, these can be expressed as

f b u k − 1 =〠
j

f bj u k − 1 ,

f a u k − 1 =〠
j

f aj u k − 1
16

Here is a simple example to show its U-model represen-
tation; consider

y k = y k − 1 sin u k − 1
1 + cos2 u k − 1 17

For its U-model of (15), it gives

f b u k − 1 = γ0 k + γ1 k cos2 u k − 1 ,
f a u k − 1 = λ1 k sin u k − 1 ,

18

where γ0 k = 1, γ1 k = 1, and λ1 k = y k − 1 .

3. Pole Placement Controller: A Show Case of
the Design Procedure

The control objective is, for a desired trajectory v k , to
determine a control input u t to drive the underlying system
output y k to follow the desired trajectory v k with an
acceptable performance (such as transient response and
steady-state error), while all the inputs and outputs of the
control system are bounded within the permitted ranges.

4 Complexity
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3.1. U-Control System Design. In general, there are three steps
in the U-control system design routine:

Form a proper linear feedback control system structure,
as shown in Figure 2. The controller, in the dashed line block,
consists of two functions, the invariant controller Gc1 and the
dynamic inverter G−1

p . The plant model is Gp.
Design the invariant controller Gc1 by linear control

system approach. By letting Gp = 1, therefore G−1
p = 1, and

specifying the desired closed-loop transfer function G, it
gives Gc1 = G/ 1 −G and the invariant controller output
v t is the desired output while the plant model is a
unit constant.

Determine dynamic inverter G−1
p to work out the control-

ler output u k − 1 . Assuming the plant model is bounded-
input/bounded-output (BIBO) stable and the inverse of Gp

exists, expressing the plant model Gp in forms of U-model,
lettingy k = v k in the U-model, gives model (15) in
expression of v k f b u k − 1 = f a u k − 1 . To determine
control input u t − 1 is to find the inverse by resolving the
equation of v k f b u k − 1 − f a u k − 1 = 0.

It should be noted that the arrow line from the plant to
the dashed line block represents the U-model update from
the plant model at each time instance.

Proposition 1. Generality: the U-model-based control allows
a once-off design for all linear and nonlinear polynomial
models. This is due to the controller Gc1 design being indepen-
dent of model Gp.

Proposition 2. Simplicity: the U-model-based control requires
no repeated computation if a plant model is changed. Again,
this is due to the controller Gc1 design being once-off and inde-
pendent of model Gp, and changes to plant model Gp only
change the U-model to resolve different roots. In comparison,
almost all classical and modern control approaches are plant
model-based designs; that is, the controller design is a func-
tion of both system performance and plant; accordingly,
if the plant model is changed, the controller must be
redesigned.

Proposition 3. Feasibility for controller design of rational
systems: this can be proved directly from Proposition 1 and
U-realisation of the rational model in (12).

In formality, the U-adaptive control is very similar to
deterministic U-model control. The difference is that the plant
model is required to be estimated or updated online in the
adaptive control.

For simplicity, but without losing generality, in formu-
lation of the U-model (polynomial), once the invariant

controller is designed, the real controller output can be
determined by letting

v k = 〠
M

j=0
λj k uj k − 1 19

Then resolving one of the roots from

v k − 〠
M

j=0
λj k uj k − 1 = 0 20

3.2. Stability and Robust Analysis of U-Model Control
Systems. There are two typical situations: ideal case—deter-
ministic systems without modelling error and disturbance,
and nonideal case—deterministic systems with modelling
errors and/or disturbance.

Theorem 1. (bounded-input, bounded-output (BIBO) stabil-
ity of deterministic U-model control systems). Regarding the
U-model control system shown in Figure 2, it is BIBO stable
and tracks the bounded reference signal r properly while the
following conditions are satisfied:

(i) Invariant controller Gc1 is closed-loop stable; that
is, all poles of the closed loop are located with the
unit circle.

(ii) Plant model Gp is a bounded-input/bounded-output
(BIBO).

(iii) The inverse of the plant model G−1
p exits.

Proof. With reference to Figure 2, it has G−1
p Gp = 1 from the

conditions (ii) and (iii). Accordingly, the closed-loop transfer
function is given in terms of Gc1/ 1 + Gc1 , which is stable
from (i), and thus, the tracking performance is given by
rGc1/ 1 +Gc1 .

Remark 2. This establishes a framework for designing control
for both linear and nonlinear dynamic plants. It is feasible,
simple, general, and with no repetition of controller design
on changes to the plant model, except the computation
of the inversion of the changed plant U-model polynomial.
In other words, this is a new methodology for minimising
the complexity induced by the plant model in control sys-
tem design, which is particularly important for nonlinear
plants. U-model, as a universal dynamic inverter, is the
key to achieve the goals.

Theorem 2. (BIBO stability of uncertain U-model control
systems). Regarding the U-model control system structured
in Figure 2, modelling error and/or disturbance εU t can be
treated as an external disturbance as shown in Figure 3. It is
BIBO stable and tracking the reference signal with a bounded
error while the following conditions are satisfied:

(i) Invariant controller Gc1 is closed-loop stable.

(ii) Plant model Gp is a bounded-input/bounded-output
(BIBO).

−1
Gp Gc1 Gp−

v ur y
(U-model)

Figure 2: U-Model control system.
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(iii) The inverse of the plant model G−1
p exits.

(iv) The upper bound of modelling error and/or distur-
bance εU t is satisfied with the conditions of small
gain robust stability [33].

Proof. In Figure 3, G−1
p Gp = 1; this gives y = rGc1/ 1 +Gc1 +

εU / 1 +Gc1 .
Then the stability of Figure 3 is the same as in Figure 2

while the upper bound εU t is satisfied with the small gain
robust stability criterion.

Remark 3. It should be noted that the tracking error is deter-
mined by εU / 1 +Gc1 ; therefore, a properly designedGc1 will
have a degree of robustness against uncertainties/disturbance.

4. Design of Pole Placement Controller

A classical approach [34] has been selected to formulate
the U-model-enhanced pole placement controller (UPPC)
[30, 31]. Here, a further refined version of UPPC is pre-
sented. Within the U-model framework, closed-loop con-
trol system performance is independently specified without
involving the plant model. Therefore, the classical version
involving plant model can be simplified as below.

Rv k = Tr k − Sy k , 21

and

R = zn + r1z
n−1 +⋯ + rn,

T = t0z
m + t1z

m−1 +⋯ + tm,
S = s0z

l + s1z
l−1 +⋯ + sl,

22

with r k for reference, v k for invariant controller Gc1
output, and y k for plant output. The polynomials R, S,
and T , with backward shift operator z−1 and proper orders
(n, m, and l), are used to specify closed-loop control
system performance.

To guarantee that the control system is realistically
implementable, specify

O S <O R ⇔l < n, O T ≤O R ⇔m ≤ n, 23

where the operator O ∗ = order ∗ denotes the order of the
concerned linear polynomial.

With reference to (19), two control roles can be assigned
with negative feedback −R/S for stabilising the closed-loop
system with requested dynamics and feedforward T/R for
reducing steady-state errors. The structured control system
is shown in Figure 4.

For designing an invariant controller, let v t = y t in
(19); thus, it gives the closed-loop transfer function

y k = T
R + S

r k = T
Ac

r k 24

Accordingly, the required design task is to assign the
closed-loop denominator polynomial Ac and the numerator
polynomial T .

It should be noted that after Ac is specified (by customers
and/or designers), a routine for resolving Diophantine is
needed to work out the parameters of polynomials R and S
from the following relationship:

R + S = Ac 25

To achieve zero steady state, T can be designed with

T = Ac 1 26

The detailed design procedure and examples can be
refereed to [31].

Remark 4. Compared with classical pole placement control
design procedures [34], the UPPC is more concise and
independent of the plant model, which results in the UPPC
being generalised to any plant model structure and once-off
designed. For each different plant model, this task is merely
the resolving of the U-model to obtain one of the roots as
the operational controller output. The relevant comparison
details can be referred in [30].

5. U-Model-Based Pole Placement Control with
Adaptive Parameter Estimation

The U-model-based adaptive control schematic diagram is
shown in Figure 5. Again, this U-model adaptive control is
different from those classical adaptive/self-tuning control
approaches in terms of control structure. The feedback
controller parameters are not tuned and thereafter are fixed:
the only adaptation is to update U-model parameters to
accommodate the plant model parameter variation and/or
external disturbance, which is consistent with Propositions
1, 2, and 3.

In general, an adaptive control system can be considered
as a two-layer system, that is:

(i) Layer 1: conventional feedback control

(ii) Layer 2: adaptation loop

In this study, the UPPC presented in Section 3 is selected
to form the conventional feedback control. Thus, this section
mainly develops this adaptation loop formulation.

In recursive formulation, there are two ways to estimate
the U-model parameters in the adaptation loop.

(i) Indirect parameter estimation: estimate the original
rational model parameters (θnj k , θdj k ) first and
then convert into U-model parameters λj k . The
challenging issue is that classical recursive least

−1
Gp (U-model)Gc1 Gp−

v ur y
+

𝜀U

Figure 3: Uncertain U-model control system.
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squares estimation algorithms give biased estimates
and recursive rational model estimators need noise
variance information in advance [11, 18].

(ii) Direct parameter estimation: estimate the U-model
parameters λj k directly. The challenging issue is
that the parameters λj k , while converted from a
rational model, are time varying at every sampling
time. It has been proved [35] that for time-varying
stochastic models, the parameter estimation errors
(PEE) with the well-known forgetting factor least
squares (FFLS) algorithm are bounded and the
FFLS is capable of reducing the squared measure-
ment error (the difference between measured output
and model-predicted output); even the time-varying
parameter estimates are not converged to their
real values.

In this study, a FFLS estimator [36] is selected with the
following formulations:

εU k = y k −ΨT k λ k − 1 ,

K k = P k − 1 Ψ k

ρ +ΨT k P k − 1 Ψ k
,

λ k = λ k − 1 +K k εU k ,
P k = Ι −K k ΨT k P k − 1 ,

27

where vector λ k = λ 0 k λ1 k … λM k
T
∈ℝM is the

estimate of λ k ; ε k ∈ℝ is the error, that is, the difference
between the measured output and the model-predicted
output; K t ∈ M + 1 × 1 is the weighting factor vector
indicating the effect of ε t to change the parameter vector;
Ψ k = 1 u k − 1 … uM k − 1 T ∈ℝM is the input
vector at time k− 1; ρ is the forgetting factor (a number less
than 1, e.g., 0.99 or 0.95, represents a trade-off between fast

tracking and noisy estimate), the smaller the value of ρ, the
quicker the information in previous data will be forgotten;
and P k ∈ℝ M+1 × M+1 is the covariance matrix.

In presenting the stability of the proposed adaptive U-
control, expand the virtual equivalent system (VES) concept
and methodology [37] for the analysis, which is an alternative
insight and judgement of the stability/convergence for
adaptive control systems. Following the similar arguments
as shown before, we assume G−1

p Gp = 1, and the invariant
controller Gc1 is well defined to stabilise conventional feed-
back control systems and track the bounded reference signal
in terms of mean squares. Then for a slow time-varying
parameter model (because it is converted from its original
time-invariant parameter model referred to in (5) and (6)),
the U-model parameter estimation errors εU t are bounded
with FFLS or the other recursive algorithms [35, 38]. In this
case, using Figure 3 again, knowing εU t includes U-model
parameter estimation errors. Hence, in terms of VES, the
adaptive control system can be treated as a summation of
two subsystems of

y = y1 + y2 =
rGc1

1 +Gc1
+ εU

1 +Gc1
28

As εU t is bounded, the adaptive control system is stable
and the tracking control error will converge to a bounded
compact set around zero, whose size depends on the ultimate
bounds of estimation error εU .

Remark 5. The U-model provides a platform for simplifying
control system design, and VES provides a platform for sim-
plifying the analysis of stability and convergence of general
adaptive control systems.

6. Simulation Studies

Four case studies have been conducted to initially vali-
date the new design procedure. It should be made clear

Rv(k) = Tw(k) − Sy(k)
Linear or NL

plant

r(k) y(k)
u(k − 1)v(k)

𝛹 (v(k), u(k − 1))

Figure 4: Structured UPPC control system.

Gc1 Gp−
v ur y

U-Model
parameters
estimation

−1
Gp (U-model)

Figure 5: Adaptive U-model control system.
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that there is no comparison result that can be provided
as this is the first study in the control of such nonlinear
rational systems.

As described before, the design is split into two stages,
design invariant control Gc1 (thus, v k by pole placement)
and determination of the controller output u k − 1 by
resolving plant U-model equation.

To design the pole placement controller, assign the
characteristic equation

Ac = z2 − 1 3205z + 0 4966 29

Factorisation of (29) gives the closed-loop poles as
0 6603 ± 0 2463i; this gives a decayed oscillatory response
(ωn = 1, ζ = 0 7), which is a commonly used dynamic
response index. For steady-state error performance, making
its error zero gives

T = Ac 1 = 1 − 1 3205 + 0 4966 = 0 1761 30

From the causality condition, specify the structures of
R and S with

R = z2 + r1z + r2,
S = s0z + s1

31

Form a Diophantine equation with polynomials Ac, R,
and S [30] to yield

r2 + s1 = 0 4966,
r1 + s0 = −1 3205

32

To make polynomial R stable and having the requested
response, assign r1 = −0 06 and r2 = 0 0005, which give two
poles z − 0 05 and z − 0 01 . Then the coefficients of poly-
nomial S are resolved in the Diophantine equation of (32)
as follows.

s0 = −1 2605,
s1 = 0 4961

33

Consequently, controller (19) can be recursively imple-
mented to calculate the virtual controller output v t :

v k + 1 = 0 06v k − 0 0005v k − 1 + 0 1761r k − 1
+ 1 2605y k − 0 4961y k − 1

34

Case 1 (feasibility test of U-control of nonlinear rational
systems). Consider a rational system modelled by

y k = 0 5y k − 1 u k − 1 + u3 k − 1
1 + y2 k − 1 + u2 k − 1 , 35

where y k is the plant output and u k is the input of the
model or controller output. This is used to test determin-
istic feedback control. The model structure has been

typically investigated in system identification. Accordingly,
its U-realisation can be expressed as

y k 1 + y2 k − 1 + u2 k − 1 = 0 5y k − 1 u k − 1 + u3 k − 1
36

To obtain the dynamic inverter G−1
p output, that is, the

controller output u t , let y k = v k ; then it gives rise to

v k 1 + y2 k − 1 + u2 k − 1 = 0 5y k − 1 u k − 1 + u3 k − 1
37

To determine the control input u k − 1 , form a U-model
equation from (37) as

λ0 k − λ1 k u k − 1 + λ2 k u2 k − 1 − λ3 k u3 k − 1 = 0,
38

where

λ0 k = v k 1 + y2 k − 1 ,
λ1 k = 0 5y k − 1 ,
λ2 k = v t ,
λ3 k = 1

39

In this simulation, the operation time length was config-
ured with 400 sampling points and the reference was a
sequence of multiamplitude steps. The achieved output
response and controller output are shown in Figures 6(a)
and 6(b), respectively.

Case 2 (test of external disturbance). Consider a stochastic
rational system modelled by

y k = 0 5y k − 1 u k − 1 + u3 k − 1
1 + y2 k − 1 + u2 k − 1 + e k , 40

where y k is the plant output, u k is the input of the model
or controller output, and e k is Gaussian noise representing
an unknown disturbance acting on the controlled plant
output.
This case study was used to test adaptive feedback control.
The feedback control loop has been designed as in Case 1;
that is, all configurations for feedback control were kept as
those used in Case 1. For the adaptation loop, the disturbance
was configured with e k ~N 0, 0 01 , the initial covariance
matrix with P k = 106I4, and the forgetting factor with ρ =
0 95 to deal with fast time-varying parameter estimation;
the initial parameter vector was randomly assigned with

λ 0 = λ 0 0 λ1 0 λ3 0 λ4 0
T
= 0 3 0 2 0 1 0 1 T ;

and the input vector was specified with Ψ k =
1 u k − 1 u2 k − 1 u3 k − 1 T . The achieved output
response and controller output are shown in Figures 7(a)
and 7(b), respectively.

Case 3 (test of internal parameter variation). The same model
structure as Case 1 is used, but the parameter associated with

8 Complexity
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y k − 1 and u k − 1 is time varying representing internal
parameter disturbances, such as worn parts in mechanical
and electrical systems.

y k = a k y k − 1 u k − 1 + u3 k − 1
1 + y2 k − 1 + u2 k − 1 41

In simulation, all the setups were the same as those used in
Case 1. The parameter variation was configured as

a k =
0 9, 120 ≤ k ≤ 250,
0 5, otherwise

42

The adaption loop, specified as in Case 2, was used to
follow the plant model internal structure variation. The
achieved output response and controller output are
shown in Figures 8(a) and 8(b), respectively. Inspecting
the simulation results, the output of the systems are seen
to track the reference signals after a short transient phase.
U-model parameter estimation is shown in Figure 9. It
should be noted that this estimated parameter vector is
to achieve smaller squared error between the measured
output and model-predicted output. Therefore, the esti-
mates are not converged to those real time-varying
parameters in the U-model. In the future, studies to deal
with time-varying parameter estimation will be conducted

0

−1

−2

0

1

2

3

4

5

6

7

50 100 150 200
Time

A
m

pl
itu

de

250 300 350

Reference

400

Plant output

(a) Plant output

−2

−4

0

2

4

6

8

10

A
m
pl
itu

de

0 50 100 150 200
Time

250 300 350 400

(b) Control input

Figure 7: Plant output and control input.

0
−1

0

1

2

3

4

5

6

7

50 100 150 200
Time

A
m

pl
itu

de

250 300 350

Reference

400

Plant output

(a) Plant output response

0
−1

0

1

2

3

4

5

6

9

8

7

50 100 150 200
Time

A
m
pl
itu

de

250 300 350 400

(b) Control input

Figure 6: Plant output and control input.

9Complexity



www.manaraa.com

in terms of reducing both squared measurement errors
and squared dynamic errors [39].

Case 4 (feasibility test of U-control of extended nonlinear
rational systems). This study is used to test the U-control of
extended rational systems with transcendental input and
delayed output.

y k = 0 5y k − 1 + sin u k − 1 + u k − 1
1 + exp −y2 k − 1 , 43

where y k is the plant output and u k is the input of the
model or controller output. Accordingly, the extended U-
model can be expressed as

y k 1 + exp −y2 k − 1 = 0 5y k − 1 + sin u k − 1
+ u k − 1

44

With the same controller designed in (44) above, assigning
the output y k of (44) with the desired output v k of
(34) gives

v k 1 + exp −y2 k − 1 = 0 5y k − 1 + sin u k − 1
+ u k − 1

45

Therefore, the control input u k − 1 can be solved by

v k 1 + exp −y2 k − 1
− 0 5y k − 1 − sin u k − 1 − u k − 1 = 0

46

The achieved output response and controller output are
shown in Figures 10(a) and 10(b), respectively. Once
again, the computational experiment confirms the feasibility
of U-control.

7. Conclusions

A fundamental question is raised in this study and those for
the other U-model-enhanced controls: after two generations
of plant model- (polynomial and state space) centered
control system design research/applications, what is the next
generation of development? Should the research for new
model structures continue, or should control systems be
designed without such plant model requirements (possibly
implying separation of control system design and controller
output determination)?

One of the feasible choices in the future progression
could be the U-control design methodology, which radically
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reduces the complexity of plant model-oriented design
methods. The proposed U-control method provides a plat-
form (1) with a universal control-oriented structure to repre-
sent existing models, (2) separating closed control system
design from plant model structure (no matter whether linear
or nonlinear or polynomial or state space), (3) where all well-
developed linear control system design methods can be
expanded in parallel to nonlinear plant models, (4) with a
supplementary to all existing control design methods.
Accordingly, this study is a show case using the U-model
framework to design the control of the nonlinear rational
systems with classical linear design approaches. Further
study on the rational model control could derive concise
algorithms for robust and adaptive control with reference
to the recent research development [40, 41].

This foundation work has put an emphasis on formula-
tion of structure in a systematic approach. Rigorous mathe-
matical considerations should be followed to establish a
comprehensive description and explanation.
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